New research promises denser disk drives

New research into "magnetic avalanches" offers insight into one cause of disk drive failure and could lead to breakthroughs in density, according to experts.

This Article Covers

Data centre

New physics research out of the University of California Santa Cruz (UC Santa Cruz) offers new insight into a poorly understood aspect of disc drive failures, according to industry experts, though they say the information won't necessarily make disc drives more reliable.

"There's been a misconception since this research was published that this is why disc drives fail, or that this is a new reason for drive failure unknown to the industry," said Josh Deutsch, who co-authored a paper that appeared online in the 13 July issue of Physical Review Letters. The research could theoretically help disc drive manufacturers find more reliable materials for disc drives, Deutsch said. He emphasized though, that disc drive manufacturers have been using materials with good damping capabilities for reliability all along -- it just wasn't until this research that the reasons were fully understood.

More on disc drives
Seagate gears up for 1 TB disc drives

Hitachi launches 1 TB SATA disc drive

1 TB drives hit PCs, NAS

Fujitsu exec says SAS may take years to hit your array
He added, "this is far from the only reason drives fail -- it shouldn't be misconstrued as such."

The research came from a chance meeting at a lecture several years ago, between Deutsch, a theoretical condensed-matter physicist and a professor at UC Santa Cruz, and Andreas Berger, at the time an engineer for Hitachi Global Storage Technologies (HGST). It was that chance meeting that steered Deutsch's research in magnetics toward disc drives in particular.

According to a press release on the research, for each bit on a disc, the magnetic disc head grazes a tiny patch of the drive, forcing its polarity, or "spin," to align up or down, the magnetic equivalent of a one or a zero. The patch's polarity in many magnetic materials changes in a series of jumps that physicists liken to an avalanche.

Deutsch and Berger discovered that such an ideal model overlooked an effect, called spin precession that each magnetic field exerts on its neighbors, causing bits to swing in circles rather than flipping totally up or down, an effect that can cause a chain reaction of "wobbly bits" that wipes out a sector of a disc drive.

Better reliability vs. better density

However, while it's easy to equate this new insight with a breakthrough that will address recently uncovered discrepancies between manufacturer ratings and disc drive reliability, one of the authors of Carnegie Mellon University's drive reliability research, Garth Gibson, an associate professor at Carnegie Mellon, and chief technology officer (CTO) and founder of Panasas Inc., (Ed. note: When does he sleep?), said that since damping materials have always been used in disc drives, though until now their precise mechanism was not as well understood, the effect of these materials on drive reliability has already been taken into account in current statistics.

Meanwhile, "the single most important property of a magnetic disc drive is its cost," Gibson noted. While the new research into magnetic avalanches could be used to make drives more reliable through the use of better damping materials, Gibson predicted what will actually happen is that drive designers will use it to figure out how to get bits closer together with the same failure rate.

According to Gibson, disc drives are already a delicate balance between reliability, performance and affordability. A significant uptick in one of those categories has the potential to throw the others off balance. "There's an analogy here with the auto industry," Gibson said. "If we all drove around in tanks, fewer people would be hurt in car accidents, but that, of course, isn't practical." Better damping materials tend to be more expensive, and while it's possible some consumers are willing to pay more for more reliable disc drives, "historically, people want a low price more than anything else." Moreover, Gibson said, expensive improvements to just one relatively minor aspect of how disc drives operate probably won't be judged cost effective when there are so many other factors in disc drive failures.

Instead, he said, look for this research to come as a godsend to disc drive engineers tasked with reaching certain thresholds of density within set product roadmap time frames, who "often have no idea how they're going to get there more than a generation beforehand. Engineers are given an orderly process [for product development], but somewhere along the line, someone still has to make a [scientific] breakthrough."



Enjoy the benefits of CW+ membership, learn more and join.

Read more on Data centre hardware



Forgot Password?

No problem! Submit your e-mail address below. We'll send you an email containing your password.

Your password has been sent to: